Research Article | DOI: https://doi.org/BRCA-25-RA-25
Analysis and Control of Zika Transmission Dynamic Models
Abstract
The Zika virus is most commonly spread to people by the bite of an infected Aedes species mosquito. It can also be spread through sex from a person who is infected with Zika virus to their sexual partner(s). Zika virus can be passed from a pregnant woman to her fetus. Infection during pregnancy can cause certain birth defects. Zika virus typically occurs in tropical and subtropical areas of Africa, the Americas, Southern Asia, and the Western Pacific. There is currently no vaccine to prevent or medicine to treat Zika. It is therefore important to understand the dynamics of the Zika virus and develop strategies to control the spread of this virus. In this work, bifurcation analysis and multiobjective nonlinear model predictive control is performed on two dynamic models involving Zika transmission. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be considered, and multiple objectives must be met simultaneously. . The MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of a branch point in the first model and a Hopf bifurcation point and a limit point in the second. The Hopf bifurcation point, which causes an unwanted limit cycle, is eliminated using an activation factor involving the tanh function. The branch and limit points (which cause multiple steady-state solutions from a singular point) are very beneficial because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best possible solution) in the models.
References
-
Duffy, M. R. , T.-H. Chen, W. Thane Hancock, A. M. Powers, J. L. Kool, R. S. Lanciotti, M. Pretrick, M. Marfel, S. Holzbauer, C. Dubray, L. Guillaumot, A. Griggs, M. Bel, A. J. Lambert J. Laven, O. Kosoy, M.S., A. Panella, B. J. Biggerstaff, M. Fischer, E. B. Hayes, Zika virus outbreak on Yap Island, federated states of Micronesia, N. Engl. J. Med., 360 (2009), 2536–2543.
View at Publisher | View at Google Scholar -
Haddow, A. D. A. J. Schuh, C. Y. Yasuda, M. R. Kasper, V. Heang, R. Huy , H. Guzman, R. B. Tesh, S. C. Weaver, Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage, PLOS Negl. Trop. Dis., 6 (2012), 7 pages. 1
View at Publisher | View at Google Scholar -
Oehler, E., L. Watrin, P. Larre, I. Leparc-Goffart, S. Last`ere, F. Valour , L. Baudouin, H. P. Mallet, D. Musso, F. Ghawche, Zika virus infection complicated by Guillain-Barre syndrome–case report, French Polynesia, December 2013, Eurosurveillance, (2014), 3 pages. 1
View at Publisher | View at Google Scholar -
Bewick, S., B., W. F. Fagan, J. Calabrese, F. Agusto, Zika virus: endemic versus epidemic dynamics and implications for disease spread in the Americas, BioRxiv, (2016). 1
View at Publisher | View at Google Scholar -
Perkins, T. A., A. S. Siraj, C. W. Ruktanonchai, M. U. G. Kraemer, A. J. Tatem, Model-based projections of Zika virus infections in childbearing women in the Americas, Nat. Microbiol., 1 (2016), 7 pages 1
View at Publisher | View at Google Scholar -
Bogoch, I. I., O. J. Brady, M. U. G. Kraemer, M. German, M. I. Creatore, M. A. Kulkarni, J. S. Brownstein, S. R. Mekaru, S. I. Hay, E. Groot, A. Watts, K. Khan, Anticipating the international spread of Zika virus from Brazil, The Lancet, 387 (2016), 335–336. 1
View at Publisher | View at Google Scholar -
Bonyah, E., K. O. Okosun, Mathematical modeling of Zika virus, Asian Pac. J. Trop. Dis., 6 (2016), 673–679. 2
View at Publisher | View at Google Scholar -
Brasil, P., J. P. Pereira, Jr., M. E. Moreira, R. M. Ribeiro Nogueira, L. Damasceno, M. Wakimoto, R. S. Rabello, S. G. Valderramos, U.-A. Halai, T. S. Salles, A. A. Zin, D. Horovitz, P. Daltro, M. Boechat, C. Raja Gabaglia, P. Carvalho de Sequeira, J.H. Pilotto, R. Medialdea-Carrera, D. Cotrim da Cunha, L. M. Abreu de Carvalho, M. Pone, A. Machado Siqueira, G.A. Calvet, A.E. Rodrigues Bai˜ao, E.S. Neves, P.R. Nassar de Carvalho, R. H. Hasue, P. B. Marschik, C. Einspieler, C. Janzen, J. D. Cherry, A. M. Bispo de Filippis, K. Nielsen-Saines, Zika virus infection in pregnant women in Rio de Janeiro, N. Engl. J. Med., 375 (2016), 2321–2334.
View at Publisher | View at Google Scholar -
Cao-Lormeau, V.M., . Blake, S. Mons, S. Last`ere, C. Roche, J. Vanhomwegen, T. Dub, Laure Baudouin, A. Teissier, P. Larre, A.-L. Vial, C. Decam, V. Choumet, S. K. Halstead, H. J. Willison, L. Musset, J.-C. Manuguerra, P. Despres, E. Fournier, H.-P. Mallet, D. Musso, A. Fontanet, J. Neil, F. Ghawch´e, Guillain-Barr´e Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study, The Lancet, 387 (2016), 1531–1539.
View at Publisher | View at Google Scholar -
Cauchemez, S., M. Besnard, P. Bompard, T. Dub, P. Guillemette-Artur, D. Eyrolle-Guignot, H. Salje, M. D. V. Kerkhove, V. Abadie, C. Garel, A. Fontanet, H.-P. Mallet, Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study, The Lancet, 387 (2016), 2125–2132.
View at Publisher | View at Google Scholar -
Elsaka, H., E. Ahmed, A fractional order network model for ZIKA, BioRxiv, (2016), 10 pages.
View at Publisher | View at Google Scholar -
Fauci, A. S., D. M. Morens, Zika virus in the Americas—yet another arbovirus threat, N. Engl. J. Med., 374 (2016), 601–604.
View at Publisher | View at Google Scholar -
Gao, D., Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell, S. Ruan, Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6 (2016), 10 pages.1, 1
View at Publisher | View at Google Scholar -
Heukelbach, J. , C. H. Alencar, A. A. Kelvin, W. K. de Oliveira, L. P. de G´oes Cavalcanti, Zika virus outbreak in Brazil, J. Infect. Dev. Ctries, 10 (2016), 116–120.
View at Publisher | View at Google Scholar -
Kucharski, A. J. , S. Funk, R. M. Eggo, H.-P. Mallet, W. J. Edmunds, E. J. Nilles, Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak, PLOS Negl. Trop. Dis., 10 (2016),15 pages. 1
View at Publisher | View at Google Scholar -
Mlakar,J., M. Korva, N. Tul, M. Popovi´c, M. Poljˇsak-Prijatelj, J. Mraz, M. Kolenc, K. Resman Rus, T. Vesnaver Vipotnik, V. Fabjan Voduˇsek, A. Vizjak, J. Pizˇem, M. Petrovec, T. Avsˇicˇ Zˇ upanc, Zika virus associated with microcephaly, N. Engl. J. Med., 374 (2016), 951–958.
View at Publisher | View at Google Scholar -
Lee, E. K., Yifan Liu, Ferdinand H. Pietz, A compartmental model for zika virus with dynamic human and vector populations, in: AMIA Annual Symposium Proceedings, Vol. 2016, American Medical Informatics Association, 2016, p. 743.
View at Publisher | View at Google Scholar -
Kibona, I. E. , C.Yang, SIR model of spread of Zika virus infections: ZIKV linked to microcephaly simulations, Health, 9, (2017), 1190–1210. 2
View at Publisher | View at Google Scholar -
Boret, S. E. B. , R. Escalante, M. Villasana, Mathematical modelling of zika virus in Brazil, arXiv preprint arXiv:1708.01280, (2017), 26 pages. 2
View at Publisher | View at Google Scholar -
Moreno, V. M., B. Espinoza, D. Bichara, S. A. Holechek, C. Castillo-Chavez, Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment, Infect. Dis. model., 2 (2017), 21–34. 1
View at Publisher | View at Google Scholar -
Folashade B. Agusto, S. Bewick, W.F. Fagan, Mathematical model of zika virus with vertical transmission, Infec. Dis. Model. 2 (2) (2017) 244–267.
View at Publisher | View at Google Scholar -
Suparit, P., A. Wiratsudakul, C. Modchang, A mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate, Theor. Biol. Med. Model., 15 (2018), 11 pages. 1
View at Publisher | View at Google Scholar -
Wiratsudakul, A., P. Suparit, C. Modchang, Dynamics of Zika virus outbreaks: an overview of mathematical modelling approaches, Peer J, 6 (2018), 30 pages. 1, 2
View at Publisher | View at Google Scholar -
Terefe, Y.A. , H. Gaff, M. Kamga, L. van der Mescht, Mathematics of a model for zika transmission dynamics, Theory Biosci. 137 (2) (2018) 209–218.
View at Publisher | View at Google Scholar -
Blanka Tesla, Leah R. Demakovsky, Erin A. Mordecai, Sadie J. Ryan, Matthew H. Bonds, Calistus N. Ngonghala, Melinda A. Brindley, Courtney C. Murdock, Temperature drives zika virus transmission: evidence from empirical and mathematical models, bioRxiv (2018) 259531.
View at Publisher | View at Google Scholar -
Khan, M. A., Syed Wasim Shah, Saif Ullah, J.F. Gómez-Aguilar,A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Analysis: Real World Applications, Volume 50, 2019, Pages 144-170, ISSN 1468-1218, https://doi.org/10.1016/j.nonrwa.2019.04.006.
View at Publisher | View at Google Scholar -
Denu, D., Son, H..
View at Publisher | View at Google Scholar -
Dhooge, A., Govearts, W., and Kuznetsov, A. Y., MATCONT: “A Matlab package for numerical bifurcation analysis of ODEs”, ACM transactions on Mathematical software 29(2) pp. 141-164, 2003.
View at Publisher | View at Google Scholar -
Dhooge, A.,W. Govaerts; Y. A. Kuznetsov, W. Mestrom, and A. M. Riet , “CL_MATCONT”; A continuation toolbox in Matlab, 2004.
View at Publisher | View at Google Scholar -
Kuznetsov,Y.A. “Elements of applied bifurcation theory” .Springer,NY, 1998.
View at Publisher | View at Google Scholar -
Kuznetsov,Y.A.(2009).”Five lectures on numerical bifurcation analysis” ,Utrecht University,NL., 2009.
View at Publisher | View at Google Scholar -
Govaerts, w. J. F., “Numerical Methods for Bifurcations of Dynamical Equilibria”, SIAM, 2000.
View at Publisher | View at Google Scholar -
Dubey S. R. Singh, S. K. & Chaudhuri B. B. 2022 Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92-108. https://doi.org/10.1016/j.neucom.2022.06.111
View at Publisher | View at Google Scholar -
Kamalov A. F. Nazir M. Safaraliev A. K. Cherukuri and R. Zgheib 2021,
View at Publisher | View at Google Scholar -
Szandała, T. 2020, Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks. ArXiv. https://doi.org/10.1007/978-981-15-5495-7
View at Publisher | View at Google Scholar -
Sridhar. L. N. 2023 Bifurcation Analysis and Optimal Control of the Tumor Macrophage Interactions. Biomed J Sci & Tech Res 53(5). BJSTR. MS.ID.008470.DOI: 10.26717/BJSTR.2023.53.008470
View at Publisher | View at Google Scholar -
Sridhar LN. Elimination of oscillation causing Hopf bifurcations in engineering problems. Journal of Applied Math. 2024b; 2(4): 1826.
View at Publisher | View at Google Scholar -
Flores-Tlacuahuac, A. Pilar Morales and Martin Riveral Toledo; “Multiobjective Nonlinear model predictive control of a class of chemical reactors” . I & EC research; 5891-5899, 2012.
View at Publisher | View at Google Scholar -
Hart, William E., Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A. Hackebeil, Bethany L. Nicholson, and John D. Siirola. “Pyomo – Optimization Modeling in Python” Second Edition. Vol. 67.
View at Publisher | View at Google Scholar -
Wächter, A., Biegler, L. “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming”. Math. Program. 106, 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y
View at Publisher | View at Google Scholar -
Tawarmalani, M. and N. V. Sahinidis, “A polyhedral branch-and-cut approach to global optimization”, Mathematical Programming, 103(2), 225-249, 2005
View at Publisher | View at Google Scholar -
Sridhar LN. (2024)Coupling Bifurcation Analysis and Multiobjective Nonlinear Model Predictive Control. Austin Chem Eng. 2024; 10(3): 1107.
View at Publisher | View at Google Scholar -
Upreti, Simant Ranjan(2013); Optimal control for chemical engineers. Taylor and Francis.
View at Publisher | View at Google Scholar