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Analysis and Control of Zika Transmission 
Dynamic Models 

 

Introduction: 

Duffy et al (2009)[1] , discussed the Zika virus outbreak on Yap Island. Haddow et al (2012)[2] , researched the  genetic 

characterization of Zika virus strains.  Oehler et al (2014)[3] demonstrated the Zika virus infection complication by the Guillain-

Barré syndrome. Bewick et al (2016)[4]  discussed the endemic and epidemic dynamics  of the Zika virus. Perkins et al (2016)[5] 

discussed the model-based projections of Zika virus infections in childbearing women in the Americas. Bogoch et al (2016)[6]  

discussed  the international spread of Zika virus from Brazil. Bonyah et al (2016)[7] , developed a mathematical model of the  

Abstract: 

The Zika virus is most commonly spread to people by the 

bite of an infected Aedes species mosquito. It can also be 

spread through sex from a person who is infected with Zika 

virus to their sexual partner(s). Zika virus can be passed 
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There is currently no vaccine to prevent or medicine to 

treat Zika.  It is therefore important to understand the 

dynamics of the Zika virus and develop strategies to control 

the spread of this virus.  In this work, bifurcation analysis 

and multiobjective nonlinear model predictive control is 

performed on two dynamic models involving Zika 

transmission. Bifurcation analysis is a powerful 

mathematical tool used to deal with the nonlinear dynamics 

of any process. Several factors must be considered, and 

multiple objectives must be met simultaneously.  . The 

MATLAB program MATCONT was used to perform the 

bifurcation analysis. The MNLMPC calculations were 

performed using the optimization language PYOMO   in 

conjunction with the state-of-the-art global optimization 

solvers IPOPT and  BARON. The bifurcation analysis 

revealed the existence of a branch point in the first model 

and a Hopf bifurcation point and a limit point in the second. 

The Hopf bifurcation point, which causes an unwanted limit 

cycle, is eliminated using an activation factor involving the 

tanh function. The branch and limit points (which cause 

multiple steady-state solutions from a singular point) are 

very beneficial because they enable the Multiobjective 
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models.  
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Zika virus. Brasil et al (2016)[[8] talked about the , zika virus infection in pregnant women. Cao-Lormeau et al (2016)[9]  

discussed the Guillain-Barré syndrome, outbreak associated with Zika virus infection.  Cauchemez et al (2016)[10] , researched 

the  association between the Zika virus and microcephaly.    Elsaka et al (2016)[11]  developed a fractional order network model 

for ZIKA. Fauci, et al (2016)[12]Zika virus  spread in the Americas. Gao et al (2016)[13]  discussed the prevention and control of 

Zika as a mosquito-borne and sexually transmitted disease. Heukelbach et al (2016)[14], discussed the Zika virus outbreak in 

Brazil. 

Kucharski, et al (2016)[15]  researched the transmission dynamics of Zika virus in island populations. Mlakar et al (2016)[16]  

demonstrated the association of the Zika virus with microcephaly. Lee et al (2016)[17] , developed a compartmental model for 

the zika virus with dynamic human and vector populations. Kibona et al (2017)[18] developed an SIR model involving the Zika 

virus infections and microcephaly.  Boret et al (2017)[19] ,  developed a model of the  zika virus in Brazil. Moreno et al (2017)[20] 

discussed the  role of the  short-term dispersal on the dynamics of Zika virus in an extreme idealized environment. Folashade 

et al (2017) [21] developed a mathematical model of the zika virus with vertical transmission. Suparit et al (2018)[22]  developed 

a mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate. Wiratsudakul et al 

(2018)[23] studied the dynamics of Zika virus outbreaks with an overview of mathematical modelling approaches. Terefe et al 

(2018)[24] discussed the mathematics of a model for zika transmission dynamics. Blanka Tesla et al (2018)[25] showed how the 

temperature drives zika virus transmission. Khan et al (2019)[26] developed a dynamical model of asymptomatic carrier zika 

virus with optimal control strategies. Denu et al (2022)[27] developed an analysis and optimal control of a deterministic Zika 

virus model.  

This work aims to perform bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies in two Zika transmission 

models, which are discussed in Khan et al (2019)[26] (model 1) and Denu et al (2022)[27] (model 2). The paper is organized as 

follows. First, the model equations are presented, followed by a discussion of the numerical techniques involving bifurcation 

analysis and multiobjective nonlinear model predictive control (MNLMPC). The results and discussion are then presented, 

followed by the conclusions. 

Model Equations: 

Model 1Khan et al (2019)[26] 

The variables (sh;  eh; ih; rh; ah; sv; ev; iv) represent, the susceptible humans, exposed humans,  

asymptomatic carrier  humans, infected humans ; recovered humans; susceptible mosquitoes;  

exposed mosquitoes; and infected mosquitoes.   

The model equations are  
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u1; u2; and u3 are the control parameters. 

The base parameter values are  

100; 0.02; 0.02;  4.0469 05;  1/ 5;  0.013;

0.001; 0.002;  0.02;  0.0002;  1/ 21;  1/10;

0.001;  1 0.5; 2 0.5; 3 0.5;
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Model 2 Denu et al (2022)[27]  

In this model, x1, x2, x3, y1, and y2 represent the susceptible humans, the infectious humans, the recovered humans, the 

susceptible mosquitoes,  and the infectious mosquitoes.   
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u1 and u2 are the control parameters. The base parameter values are  

1 2

0.4;  0.4;  0.3;   0.4;   0.8;  1/ 60;  0.07;  0.1; 

 2;   4;  1 0.1;  2 0.2.
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= = = =
  

Bifurcation analysis  

 The MATLAB software MATCONT is used to perform the bifurcation calculations. Bifurcation analysis deals with multiple 

steady-states and limit cycles.  Multiple steady states occur because of the existence of branch and limit points.  Hopf bifurcation 

points cause limit cycles .  A  commonly used MATLAB program that locates limit points,  branch points, and Hopf bifurcation 

points is MATCONT(Dhooge Govearts, and Kuznetsov, 2003[28]; Dhooge Govearts, Kuznetsov, Mestrom and   Riet,  2004[29] ).  

This program  detects Limit points(LP),  branch points(BP), and Hopf bifurcation points(H) for an  ODE  system  

 ( , )
dx

f x
dt

=   (3) 

 
nx R  Let the bifurcation parameter be   . Since the gradient is orthogonal to the tangent vector,   

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    must satisfy  

 

 0Aw =   (4) 

 Where  A is  

 [ / | / ]A f x f =       (5) 

where  /f x   is the Jacobian matrix.  For both limit and branch points, the Jacobian matrix  [ / ]J f x=     must be singular.   
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For a  limit point, there is only one tangent at the point of singularity. At this singular point,  there is a single  non-zero vector, 

y,  where Jy=0. This vector is of dimension n. Since there is only one tangent the vector 

1 2 3 4( , , , ,... )ny y y y y y=  must align with  
1 2 3 4

ˆ ( , , , ,... )nw w w w w w=  . Since  

 ˆ 0Jw Aw= =   (6) 

   

 the n+1 th component of the tangent vector 1nw +  = 0 at  a limit point (LP).  

For a branch point, there must exist two tangents at the singularity. Let the two tangents be z and w.  This implies that  

 
0

0
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=

=
  (7) 

Consider a vector v that is orthogonal to one of the tangents (say w). v can be expressed as a linear combination of z and w (

v z w = + ). Since 0Az Aw= =  ; 0Av =  and since w and v are orthogonal,  

0Tw v = . Hence 0
T

A
Bv v

w

 
= = 
 

 which implies that B is singular.  

Hence,  for a branch point (BP) the matrix 
T

A
B

w

 
=  
 

 must be singular.  

At  a Hopf bifurcation point,  

 det(2 ( , )@ ) 0x nf x I =   (8) 

  @ indicates the bialternate product while 
nI  is the n-square identity matrix. Hopf bifurcations cause limit cycles  and should 

be eliminated because limit cycles  make optimization and control tasks very difficult.  More details can be found in Kuznetsov 

( 1998[30];  2009[31]) and Govaerts  [2000] [32]. 

 

Hopf bifurcations cause  limit cycles. The tanh activation function (where a control value u is replaced by ) ( tanh / )u u    is  

used to eliminate spikes in the optimal control profiles(Dubey et al 2022[33];  Kamalov et al, 2021[34] and Szandała, 

2020[35];Sridhar  2023[36] ). Sridhar (2024)[37] explained with several examples how the activation factor involving the tanh 

function also  eliminates the  Hopf bifurcation points. This was because the tanh function increases the oscillation time period 

in the limit cycle.  

 

Multiobjective Nonlinear Model Predictive Control(MNLMPC)  

The rigorous multiobjective nonlinear model predictive control (MNLMPC) method developed by Flores Tlacuahuaz et al 

(2012)[38]  was used.  

  Consider a problem where  the variables  
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This will provide the values of u  at  various times. The first obtained control value of u  is implemented and the rest are  

discarded. This procedure is repeated until the implemented and the first obtained control values are the same or if the Utopia 

point  where ( 

0

*( )
i f

i

t t

j i j

t

q t q
=

=

=  for all j)   is obtained.  

Pyomo (Hart et al, 2017)[39] is used for these calculations.  Here, the differential equations are  converted to a Nonlinear 

Program (NLP) using the orthogonal collocation method   The NLP is solved using  IPOPT (Wächter And Biegler, 2006)[40]and 

confirmed as a global solution with BARON (Tawarmalani, M. and N. V. Sahinidis 2005)[41].  

  The steps of the algorithm are as follows   
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4. Repeat steps 1 to 3 until there is an insignificant difference between the implemented and the first obtained value of 

the control variables or if the Utopia point is achieved. The Utopia point is when 

0
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 Sridhar (2024)[42]  demonstrated that when the bifurcation analysis revealed the presence of limit and branch points  tthe 

MNLMPC calculations to converge to the Utopia solution .  For this,  the singularity condition, caused by the presence of the 

limit or branch points  was imposed on the co-state equation (Upreti, 2013)[43].   If the minimization  of   1q  lead to the value 

*

1q  and the minimization of 2q  lead to the value 
*

2q   The MNLPMC calculations will minimize the function 

* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The multiobjective  optimal control problem is 
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Differentiating the objective function results in  
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The Utopia point requires that both 
*

1 1( )q q−  and 
*

2 2( )q q−  are zero.  Hence   
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* 2 * 2

1 1 2 2(( ) ( ) ) 0
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The optimal control co-state equation (Upreti;  2013)[43] is  
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i  is the Lagrangian multiplier. ft  is the final time.  The first term in this equation is 0 and hence  
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d
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At a limit or a branch point, for the set of ODE ( , )
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=  xf  is singular. Hence there are two different vectors-values for 
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   . In between there is a vector [ ]i  where ( ) 0i

d
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 =  . This coupled with the boundary 

condition ( ) 0i ft =  will lead to  [ ] 0i =  This makes the problem an unconstrained optimization problem, and the optimal  

solution is the Utopia solution.   

 

 

Results and Discussion 

The bifurcation analysis for Model 1 with u3 as the bifurcation parameter revealed a branch point (BP at (sh;  eh; ih; rh; ah; sv; 

ev; iv; u3 ) values of ( 977.301174; 19.436982; 19.892451;  245.773933;  94809.862005;  0; 0; 0; 0.295775 ). This is seen in Fig. 

1a. 

For theMNLMPC calculations in model 1,    sh(0) and sv(0) are (10000 and 1000 respectively. 

0 0 0
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were    minimized individually and each of them led to a value  of 0. 85,    The overall optimal  control problem will involve the 

minimization of 
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i f i f i f

i i i

t t t t t t

i i i

t t t

ah t ih t eh t
= = =
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− − + −    

was minimized subject to the equations governing the model. This led to a value of zero (the Utopia solution.  The various 

concentration profiles for this MNLMPC calculation are shown in Figs. 1b-1i.  

The MNLMPC values of the control variables, u1 u2 u3  were 1, 0.4909, and  0.16934.  

The noise exhibited by the control profiles (u1, u2, u3) (Fig. 1h)    was remedied using the Savitzky Golay filter (Fig. 1i ) to 

produce the control profiles (u1sg, u2sg, u3sg). It is seen that the presence of the branch point is beneficial because it allows 

the MNLMPC calculations to attain the Utopia solution, validating the analysis of Sridhar(2024)[42]. 

The bifurcation analysis for Model 2  with u2 as the bifurcation parameter revealed a Hopf bifurcation point and a limit point 

at (curve AB)  (x1, x2, x3, y1, y2,u2) values  ( 48.093182, 7.475539, 64.431279, 1.999327, 0.000673, 0.310878 ) and  ( 62.448968, 

4.607696, 52.943336,  1.999585,  0.000415, 0.368013 ). This is shown in Fig. 2a.  When the manipulated variable u2 is changed 

to u2*tanh(u2)/0.015 the Hopf bifurcation point disappears (curve CD in Fig. 2a). This validates the analysis in Sridhar(2024)[37]. 

The limit cycle produced by this Hopf bifurcation point is shown in Fig. 2b. 

For theMNLMPC calculations in model 2,    x1(0) and y1(0) are (500 and 50 respectively. 

0 0

2( ), 2( )
i f i f

i i

t t t t

i i

t t

x t y t
= =

= =

   were    minimized 

individually and each of them led to a value  of 0. The overall optimal  control problem will involve the minimization of 
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t t

x t y t
= =

= =

− −   

was minimized subject to the equations governing the model. This led to a value of zero (the Utopia solution.  The various 

concentration profiles for this MNLMPC calculation are shown in Figs. 2c-2f.  

The MNLMPC values of the control variables, u1 u2  were 0.1632, and  1.52e-05. 

The noise exhibited by the control profiles (u1, u2) (Fig. 2e)    was remedied using the Savitzky Golay filter (Fig. 2f) to produce 

the control profiles (u1sg, u2sg). It is observed that the presence of the branch point is beneficial, as it enables the MNLMPC 

calculations to attain the Utopia solution, thereby validating the analysis by Sridhar (2024)[42]. 

 

 
Figure 1a: Bifurcation Diagram for Zika Model 1 

 
Figure 1b: MNLMPC Zika Model 1(sh vs t) 

 
Figure 1c: MNLMPC Zika Model 1(eh, ih  vs t) 

https://sciencefrontier.org/journals/biomedical-research-and-clinical-advancements
https://sciencefrontier.org/journals/biomedical-research-and-clinical-advancements


                                                                                                                                                                     

 

                          https://sciencefrontier.org/journals/biome

dical-research-and-clinical-advancements 
 

 

                           © 2025 Lakshmi. N. Sridhar et al. 

8 

 
Figure 1d: MNLMPC Zika Model 1 (rh  vs t) 

 
Figure 1e: MNLMPC Zika Model 1 (eh  vs t) 

 
Figure 1f: MNLMPC Zika Model 1 (sv  vs t) 

 
Figure 1g: MNLMPC Zika Model 1 (ev,iv  vs t) 
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Figure 1h: MNLMPC Zika Model 1 (u1, u2, u3  vs t)(noise exhibited in control profile) 

 
Figure 1i: MNLMPC Zika Model 1 (u1, u2, u3  vs t)(noise removed in control profile) 

 

 
Figure 2a: Limit point and Hopf bifurcation Point in Zika model 2 
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Figure 2b: Limit cycle caused by Hopf bifurcation Point in Zika model 2 

 

 
Figure 2c: MNLMC Zika model 2 x1 x2 x3 vs t 

 
Figure 2d : MNLMC Zika model 2 y1 y2  vs t 
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Figure 2e: MNLMPC Zika Model 2 (u1, u2  vs t)(noise exhibited in control profile) 

 

 
Figure 2f : MNLMPC Zika Model 1 (u1sg, u2sg)(noise removed in control profile) 

Conclusions 

Bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies in two dynamic zika transmission models. The 

bifurcation analysis revealed the existence of a branch point in the first model and a Hopf bifurcation point and a limit point 

in the second. The Hopf bifurcation point, which causes an unwanted limit cycle, is eliminated using an activation factor 

involving the tanh function. The branch and limit points (which cause multiple steady-state solutions from a singular point) are 

very beneficial because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia 

point (the best possible solution) in the models.    A combination of bifurcation analysis and Multiobjective Nonlinear Model 

Predictive Control(MNLMPC)  for Zika transmission models is the main contribution of this paper.  
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