Research Article | DOI: https://doi.org/BRCA-25-RA-27
Device For the Magnetic Treatment of Acidolactic Bacteria: Design and Simulation
Abstract
At present, the magnetic treatment of microorganisms in the food industry is gaining more popularity. The magnetic (CM) and / or electromagnetic (CEM) field is being used as an emerging technology within non-thermal food processes that tends to stimulate or inhibit microbial growth depending on factors such as magnetic induction and exposure time to the magnetic field. The objective of this work lies in the design and construction of a magnetic device, which consists of a magnetic system, formed by permanent magnets of rectangular shape, which are distributed and confined in a non-ferromagnetic, annular structure; that contributes: to the growth of lactic acid bacteria (LAB), the pH, the acidity, the morphology of the cells, the symbiotic relationship with an increase in the cell concentration and viability of the yogurt culture to 96%, maintaining the parameters quality of the final product, implementing a new technology in the industrial production of yogurt.
References
-
Barnes, F. S., & Greenebaum, B. (Eds.). (2018). Biological and medical aspects of electromagnetic fields. CRC press.
View at Publisher | View at Google Scholar -
Zhang, G., Sun, J., Yang, J., Qi, X., Ramakrishna, R., Li, Q., ... & Chen, B. (2024). Unlocking the mystery of Tibetan yak butter and its byproducts: processing, physicochemical characteristics, functional benefits, and applications. Trends in Food Science & Technology, 104484.
View at Publisher | View at Google Scholar -
Tirono, M. (2022). The application of extremely low-frequency (elf) magnetic fields to accelerate growth of Lactobacillus acidophilus bacteria and milk fermentation process. Acta Scientiarum Polonorum Technologia Alimentaria, 21(1), 31-38.
View at Publisher | View at Google Scholar -
Deutmeyer, A., Raman, R., Murphy, P., & Pandey, S. (2011). Effect of magnetic field on the fermentation kinetics of Saccharomyces cerevisiae. Advances in Bioscience and Biotechnology, 2(04).
View at Publisher | View at Google Scholar -
Díaz Orellana, B. R. (2023). Cronología de actividades, Lacthosa.
View at Publisher | View at Google Scholar -
Arias-Rodríguez, C., Rodriguez-Heredia, D., & Tejera-Cisneros, H. E. (2023). Levadura torula: revisión de sus características, aplicaciones e influencia del campo magnético en su crecimiento. Tecnología Química, 43(2), 309-330.
View at Publisher | View at Google Scholar -
Alvarez D.C., Pérez, V.H., Justo, R., Alegre R.M., Effect of the extremely low frequency magnetic field on nisin production by Lactococcus lactis subsp. lactis using cheese whey permeate. Process biochemistry, 41(9), 1967-1973. (2006).
View at Publisher | View at Google Scholar -
Villalpanda, M. A., Armenteros, T. M. G., & Fiallo, C. M. A. (2011). El campo magnético aplicado a la industria alimentaria. El campo, 26, 09. metros controlados en la industria cervecera. En actas (CD-ROM) 11na Conferencia internacional sobre Ciencia y Tecnología de los Alimentos (CICTA - 11). La Habana, Cuba. (2008).
View at Publisher | View at Google Scholar -
Mesa Torres, L., García Rodríguez, J. L., Mesa Mariño, Y., León Sardiñas, Y., & Gilart, A. (2019). Tratamiento magnético de cepas de yogurt fortificado con gluconatos de hierro. Tecnología Química, 39(3), 608-618.
View at Publisher | View at Google Scholar -
Nirmal, N. P., Khanashyam, A. C., Mundanat, A. S., Shah, K., Babu, K. S., Thorakkattu, P., ... & Pandiselvam, R. (2023). Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods, 12(3), 556.
View at Publisher | View at Google Scholar -
Akarca, G., & Denizkara, A. J. (2024). Changes of quality in yoghurt produced under magnetic field effect during fermentation and storage processes. International Dairy Journal, 150, 105841.
View at Publisher | View at Google Scholar -
O’Reilly T.; Teeuwisse, W. M.; de Gans, D.; Koolstra, K.; Webb, A. G.; In vivo three-dimensional brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magnetic Resonance in Medicine. 85(1), 495-505. https://doi.org/10.1002/mrm.28396. (2020).
View at Publisher | View at Google Scholar -
Rodríguez Gómez, A. A. (2023). Desarrollo de un proceso de obtención de ácido láctico a partir de residuos de alimentos tratados por medio de hidrólisis enzimática y fermentación bajo distintos coeficientes carbono-nitrógeno (C/N) y contenido de sólidos totales (TS).
View at Publisher | View at Google Scholar -
Díaz Orellana, B. R. (2023). Cronología de actividades, Lacthosa.
View at Publisher | View at Google Scholar -
Ahansaz, N., Tarrah, A., Pakroo, S., Corich, V., & Giacomini, A. (2023). Lactic Acid Bacteria in Dairy Foods: Prime Sources of Antimicrobial Compounds. Fermentation, 9(11), 964.
View at Publisher | View at Google Scholar -
Cabrera Tejera, A., Milanés Hermosilla, D., Gilart González, F., & Vázquez Somoza, R. (2020). Diseño y desarrollo de una instalación experimental para caracterizaciones magnéticas. Ingeniería Electrónica, Automática y Comunicaciones, 41(1), 60-72.
View at Publisher | View at Google Scholar -
Petruska, A. J., & Abbott, J. J. (2012). Optimal permanent-magnet geometries for dipole field approximation. IEEE transactions on magnetics, 49(2), 811-819.
View at Publisher | View at Google Scholar -
Bergues L.E.C., Reguera F.M., Cálculo y Análisis de Bobinas Correctoras del Campo Magnético para Equipos de RMNI con Núcleo de aire: I Bobinas Circulares. Rev. Cubana Fís. XII. (1993).
View at Publisher | View at Google Scholar -
Pérez Bruzon, R., & Hinojosa Aldana, R. (1998). Influencia del campo magnético constante como terapéutica del cáncer. Preparación de las condiciones para el experimento. Director: Luis Bergues Cabrales. Tesis presentada en opción al Título de licenciatura en Física. Departamento de Física. Universidad de Oriente
View at Publisher | View at Google Scholar -
Cooley, C. Z., Haskell, M. W., Cauley, S. F., Sappo, C., Lapierre, C. D., Ha, C. G., & Wald, L. L. (2017). Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE transactions on magnetics, 54(1), 1-12.
View at Publisher | View at Google Scholar -
Mesa M. Y., Más D.S., Villalpanda A.M.; Diaz V.M., Estudio del comportamiento de Bacterias Acidolácticas (BAL) del cultivo Bioyogur a diferentes dosis de tratamiento magnético. Tecnología Química 36(3) pp. 70-38. ISSN 2224-6185. Disponible en Web:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid00300010 (2017).
View at Publisher | View at Google Scholar -
Tewari S., O’Reilly T., Webb A., Improving the field homogeneity of fixed-and variable-diameter discrete Halbach magnet arrays for MRI via optimization of the angular magnetization distribution. Journal of Magnetic Resonance 324. ISBN106923. Disponible en Web: https://doi.org/10.1016/j.jmr.2021.106923. (2021).
View at Publisher | View at Google Scholar -
Torres, L. M., Rodríguez, J. L. G., & Cayamo, A. A. B. (2023). Design and construction of a Halbach magnetizer for magnetic treatment of fluids. MOJ Sports Med, 6(1), 33-35.
View at Publisher | View at Google Scholar -
Soltner R H., Blumler P. Dipolar Halbach Magnet Stacks Made from Identically Shaped Permanent Magnets for Magnetic Resonance. Magnetic Resonance Part A. 36(4), 211–222. (2010).
View at Publisher | View at Google Scholar -
Torres, L. M., Cayamo, A. A. B., & Rodriguez, J. L. G. (2023). Magnetic bed for the treatment of different somatic diseases: design and simulation. Diagnostics and Therapeutics, 41-46.
View at Publisher | View at Google Scholar -
Shiriny A., Bayareh M. On magnetophoretic separation of blood cells using Halbacharray of magnets. Meccanica. https://doi.org/10.1007/s11012-020-01225-y. (2020).
View at Publisher | View at Google Scholar -
Seyfali, E., Khoshtaghaza, M. H., Rouhi, M., Sarlak, Z., & Najafi, G. (2024). The potential of pulsed electromagnetic field-generated shock waves for reducing microbial load and improving homogenization in raw milk. Heliyon.
View at Publisher | View at Google Scholar -
Rojas, M. I. R. (2023). Evaluación de las propiedades emulsificantes, espesantes y estabilizantes de los exopolisacaridos generados por Leuconostoc mesenteroides P45 mediante un sistema de electrofermentación.
View at Publisher | View at Google Scholar -
Khelissa S., Chihib, N.E., Gharsallaoui, A. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Archives of Microbiology, 203(2), 465-480. (2021).
View at Publisher | View at Google Scholar -
Anaya M B, et al. Influencia del campo magnético sobre el crecimiento de microorganismos patógenos ambientales aislados en el Archivo Nacional de la República de Cuba. Biomédica. 2015. 35 (3). ISSN0120-4157. Disponible en Web: http:// www.revistabiomedicaorg/index.php/biomédica/ article/view/569. (2015).
View at Publisher | View at Google Scholar -
Mesa M. Y., Más D.S., Villalpanda A.M.; Diaz V.M., Estudio del comportamiento de Bacterias Acidolácticas (BAL) del cultivo Bioyogur a diferentes dosis de tratamiento magnético. Tecnología Química 36(3) pp. 70-38. ISSN 2224-6185. Disponible en Web:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid00300010 (2017).
View at Publisher | View at Google Scholar -
Icer, M. A., Özbay, S., Ağagündüz, D., Kelle, B., Bartkiene, E., Rocha, J. M. F., & Ozogul, F. (2023). The impacts of acidophilic lactic acid Bacteria on food and human health: a review of the current knowledge. Foods, 12(15), 2965.
View at Publisher | View at Google Scholar -
Font, Y. S., Díaz, Y. O., Cuypers, A., Alemán, E. I., & Vandamme, D. (2023). The effect of magnetic field treatment on the cultivation of microalgae: An overview of involved mechanisms. Journal of Applied Phycology, 35(4), 1525-1536.
View at Publisher | View at Google Scholar