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Analysis and Control of Dengue Transmission 
Dynamic Models 

 

Introduction: 

Bhatt et al (2013)[1]  discussed the global distribution and burden of dengue. Buonomo et al (2017)[2] investigated the optimal 

bed net use for a dengue disease model with a mosquito seasonal pattern. Agusto et al (2018)[3] discussed the optimal control 

strategies for dengue transmission in Pakistan.  Khormi et al (2020)[4]  modelled dengue fever risk based on socioeconomic 

parameters, meteorological factors, and vector indices in Saudi Arabia using geospatial techniques. Ndii et al (2020)[5] 

developed an optimal vaccination strategy for dengue transmission in Kupang city, Indonesia. Grange et al (2020)[6] discussed 

the  evolution of endemic dengue virus in New Caledonia. Jan et al (2020)[7], developed a new model of dengue fever in terms 

of fractional derivatives. Abidemi et al (2020)[8] provided an analysis of dengue fever transmission dynamics with multiple 

controls.  Abidemi et al (2020)[9]  developed optimal control strategies for dengue fever spread in Johor, Malaysia. Chakraborty 

et al (2021)[10]  analyzed the dengue transmission in bangladesh with saturated incidence rate and a constant treatment 

function.  Khan et al (2021)[11] discussed the dynamics of dengue infection using  the fractal-fractional operator with real 
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statistical data.  Hamdan et al (2021)[12]   developed   a deterministic dengue epidemic model with the influence of temperature. 

Lima-Camara et al (2021)[13], provided a  review on the vectors and the epidemiology of dengue in the Americas. Asamoah et 

al(2021)[14] researched optimal control and cost-effectiveness analysis for dengue fever model with asymptomatic and partial 

immune individuals. Khan(2021)[15] modelled and analyzed dengue infection n East Java, Indonesia. Puspita et al (2022)[16]  

worked on the time-dependent force of infection and effective reproduction ratio in an age-structure dengue transmission 

model in Bandung City, Indonesia. Bonyah et al (2022)[17] developed a  fractional order dengue fever model in the context of 

protected travelers. Aguiar et al (2022)[18] reviewed mathematical models for dengue fever epidemiology. Steindorf et al 

(2022)[19]  modelled  secondary infections with temporary immunity and disease enhancement factor and studied the 

mechanisms for complex dynamics in simple epidemiological models. Hamdan et al (2022)[20] modelled  dengue transmission 

with intervention strategies using fractional derivatives. Ogunlade et al (2023)[21] provided a  systematic review of 

mathematical models of dengue transmission and vector control. Srivastav et al (2023)[22] studied the effects of public health 

measures on severe dengue cases using an optimal control approach. Pongsumpun et al (2023)[23] provided a modified optimal 

control for the mathematical model of dengue virus with vaccination. Aldila et al (2023)[24] discussed the impact of social 

awareness, case detection, and hospital capacity on dengue eradication in Jakarta. Abidemi et al (2023)[25] studied the  host-

vector dynamics of dengue with asymptomatic, isolation and vigilant compartments with insights from modelling. Khan et al 

(2023)[26] investigated the  dengue transmission under future climate and human population changes in mainland China. De 

Araújo et al (2023)[27] applied  a multi-strain dengue model to epidemics data. Li et al (2023)[28]  provided a dynamic analysis 

of an age-structured dengue model with asymptomatic infection. Vinagre et al (2023)[29]  provided a dynamical analysis of a 

model for secondary infection of dengue.  Li et al (2023)[30]  performed optimal control studies of the dengue vector based on 

a reaction–diffusion model. Zhang et al(2023)[31] solved an optimal control problem for dengue transmission model with 

Wolbachia and vaccination. Barrios-Rivera (2023)[32], solved an optimal control problem  of a two-patch dengue epidemic under 

limited resources. Saha et al (2023)[33] researched  disease dynamics and optimal control strategies of a two-serotype dengue 

model with co-infection. Li et al (2023)[34] modelled  the impact of awareness programs on the transmission dynamics of 

dengue and optimal control. Puspita et al (2023) [35] , modelled and analyzed dengue cases in Palu City, Indonesia. Aldila et al 

(2023)[36] studied the  impact of social awareness, case detection,and hospital capacity on dengue eradication in Jakarta. 

Pongsumpun et al (2023)[37] developed a modified optimal control for the mathematical model of dengue virus with 

vaccination.  Anam et al (2024)[38]  studied within-host models unravelling the dynamics of dengue reinfections. Abidemi et al 

(2024)[39], developed an optimal control model for dengue dynamics with asymptomatic, isolation, and vigilant Compartments. 

Herdicho et al (2025)[40] modelled the dynamics of dengue Transmission with awareness and optimal control analysis.  

This work aims to perform bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies in two dengue 

transmission models, which are discussed in Abidemi et al (2024)[39] (model 1) and   and . Herdicho et al (2025)[40] (model 2). 

The paper is organized as follows. First, the model equations are presented, followed by a discussion of the numerical 

techniques involving bifurcation analysis and multiobjective nonlinear model predictive control (MNLMPC). The results and 

discussion are then presented, followed by the conclusions. 

Model Equations 

Model 1(Abidemi et al (2024)[39]) 

In this model, nh, sh, eh, ah, ih, qh, rh, vh nm, sm, em, im  represent the total  human population,  susceptible population,  

exposed individuals population,  asymptomatic infected individual population, symptomatic infectious individual population,  

isolated infected individual population,  recovered individual population, vigilant individual population, susceptible mosquito 

population, exposed mosquito population, and symptomatic infectious mosquito population.  The model equations are  

https://sciencefrontier.org/journals/biomedical-research-and-clinical-advancements
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Model 2(Herdicho et al (2025)[40]) 

In this model, is separated into  (sm) and (im)  are the susceptible and infectious  mosquitoes. The unaware susceptible humans, 

aware susceptible humans, infectious humans, hospitalized humans and recovered  humans are given by shu, sha, ih, ph, and 

rh.   
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Bifurcation analysis  

 The MATLAB software MATCONT is used to perform the bifurcation calculations. Bifurcation analysis deals with multiple 

steady-states and limit cycles.  Multiple steady states occur because of the existence of branch and limit points.  Hopf bifurcation 

points cause limit cycles .  A  commonly used MATLAB program that locates limit points,  branch points, and Hopf bifurcation 

points is MATCONT(Dhooge Govearts, and Kuznetsov, 2003[41]; Dhooge Govearts, Kuznetsov, Mestrom and   Riet,  2004[42] ).  

This program  detects Limit points(LP),  branch points(BP), and Hopf bifurcation points(H) for an  ODE  system  

 ( , )
dx

f x
dt

=   (4) 

 
nx R  Let the bifurcation parameter be   . Since the gradient is orthogonal to the tangent vector,   

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    must satisfy  

 

 0Aw =   (5) 

 Where  A is  

 [ / | / ]A f x f =       (6) 

where  /f x   is the Jacobian matrix.  For both limit and branch points, the Jacobian matrix  [ / ]J f x=     must be singular.   

For a  limit point, there is only one tangent at the point of singularity. At this singular point,  there is a single  non-zero vector, 

y,  where Jy=0. This vector is of dimension n. Since there is only one tangent the vector 

1 2 3 4( , , , ,... )ny y y y y y=  must align with  1 2 3 4
ˆ ( , , , ,... )nw w w w w w=  . Since  
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 ˆ 0Jw Aw= =   (7)   

 the n+1 th component of the tangent vector 1nw +  = 0 at  a limit point (LP).  

For a branch point, there must exist two tangents at the singularity. Let the two tangents be z and w.  This implies that  

 
0

0
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=

=
  (8) 

Consider a vector v that is orthogonal to one of the tangents (say w). v can be expressed as a linear combination of z and w (

v z w = + ). Since 0Az Aw= =  ; 0Av =  and since w and v are orthogonal,  
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 must be singular.  

At  a Hopf bifurcation point,  

 det(2 ( , )@ ) 0x nf x I =   (9) 

  @ indicates the bialternate product while 
nI  is the n-square identity matrix. Hopf bifurcations cause limit cycles  and should 

be eliminated because limit cycles  make optimization and control tasks very difficult.  More details can be found in Kuznetsov 

( 1998[43];  2009[44]) and Govaerts  [2000] [45]. 

Multiobjective Nonlinear Model Predictive Control(MNLMPC)  

The rigorous multiobjective nonlinear model predictive control (MNLMPC) method developed by Flores Tlacuahuaz et al 

(2012)[46]  was used.  

  Consider a problem where  the variables  
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 ft  being the final time value, and n the total number of objective variables and  u  the control parameter.     The single 
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This will provide the values of u  at  various times. The first obtained control value of u  is implemented and the rest are  

discarded. This procedure is repeated until the implemented and the first obtained control values are the same or if the Utopia 

point  where ( 

0

*( )
i f

i

t t

j i j

t

q t q
=

=

=  for all j)   is obtained.  
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Pyomo (Hart et al, 2017)[47] is used for these calculations.  Here, the differential equations are  converted to a Nonlinear 

Program (NLP) using the orthogonal collocation method   The NLP is solved using  IPOPT (Wächter And Biegler, 2006)[48]and 

confirmed as a global solution with BARON (Tawarmalani, M. and N. V. Sahinidis 2005)[49].  

  The steps of the algorithm are as follows   

1. Optimize 

0

( )
i f

i

t t

j i

t

q t
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=

  and obtain 
*

jq . 

2. Minimize 
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−  and get  the control values at various times. 

3. Implement the first obtained control values  

4. Repeat steps 1 to 3 until there is an insignificant difference between the implemented and the first obtained value of 

the control variables or if the Utopia point is achieved. The Utopia point is when 

0
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j i j
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q t q
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=

=  for all j.  

 Sridhar (2024)[50]  demonstrated that when the bifurcation analysis revealed the presence of limit and branch points  tthe 

MNLMPC calculations to converge to the Utopia solution .  For this,  the singularity condition, caused by the presence of the 

limit or branch points  was imposed on the co-state equation (Upreti, 2013)[51].   If the minimization  of   1q  lead to the value 

*

1q  and the minimization of 2q  lead to the value 
*

2q   The MNLPMC calculations will minimize the function 

* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The multiobjective  optimal control problem is 
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The optimal control co-state equation (Upreti;  2013)[51] is  
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i  is the Lagrangian multiplier. ft  is the final time.  The first term in this equation is 0 and hence  
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At a limit or a branch point, for the set of ODE ( , )
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=  xf  is singular. Hence there are two different vectors-values for 
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[ ]i  where ( ) 0i

d

dt
   and ( ) 0i

d

dt
   . In between there is a vector [ ]i  where ( ) 0i

d

dt
 =  . This coupled with the boundary 

condition ( ) 0i ft =  will lead to  [ ] 0i =  This makes the problem an unconstrained optimization problem, and the optimal  

solution is the Utopia solution.   

 

Results and Discussion 

The bifurcation analysis of the Dengue model 1 revealed a branch point at [sh,  eh, ah,  ih,  qh,  rh,  vh, sm, em,im 1  ] values  

of  

( 3085316.24165,  0,  0,  0,  0,  0,  162385.06535,  9743099.9988,  0,  0, 0.072616 ). This is shown in Fig. 1. 

For theMNLMPC calculations in model 1,    sh(0) eh(0) ih(0) qh(0) ah(0) rh(0) vh(0)  sm(0)  em(0) im(0) values are  3247302, 120, 

85, 37, 61, 45, 50, 100,100. 

0 0 0 0 0
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      were    minimized individually and each of them led to a values  85,  37, 

61, 100, and 100.  The overall optimal  control problem will involve the minimization of 

0 0 0 0 0

2 2 2 2 2( ( ) 85) ( ( ) 37) ( ( ) 61) ( ( ) 100) ( ( ) 100)
i f i f i f i f i f

i i i i i
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− − + − + − + −      

was minimized subject to the equations governing the model. This led to a value of zero (the Utopia solution.  The various 

concentration profiles for this MNLMPC calculation are shown in Figs. 2-13.  

The MNLMPC values of the control variables, 1 2 3, ,    were 0.18911,  0.07406, and   0.009789.  

The control profiles, 1 2 3, ,   (Fig. 12)  exhibited noise, and this was remedied using the Savitzky Golay filter (Fig. 13). It is seen 

that the presence of the branch point is beneficial because it allows the MNLMPC calculations to attain the Utopia solution, 

validating the analysis of Sridhar(2024). 

The bifurcation analysis of the Dengue model 2 (u1 was the bifurcation parameter)   revealed a limit  point at (sm; im; shu; 

sha; ih; ph; rh u1) ; values  of ( 1366836.962844 0,  14791.015455,  25137.31219,  0, 0, 0, 0 ) 

 

For theMNLMPC calculations in model 2,    sm(0) shu(0) sha(0) were 5.0e+05, 1.0e+05 and 1.0e+05.  

0 0 0

( ), ( ), ( )
i f i f i f

i i i

t t t t t t

i i i

t t t

im t ih t ph t
= = =

= = =

    were    minimized individually and each of them led to a values  0.   The overall optimal 5, 37, 

61, 100, and 100. control problem will involve the minimization of 

0 0 0

2 2 2( ( )) ( ( )) ( ( ))
i f i f i f

i i i

t t t t t t

i i i

t t t

im t ih t ph t
= = =

= = =

+    

was minimized subject to the equations governing the model. This led to a value of zero (the Utopia  

The MNLMPC values of the control variables, u1, u2 u3 were (0.01656,  0.47262, 0.465221)The control profiles , u1, u2, u3 

1 2 3, ,   (Fig. 22)  exhibited noise, and this was remedied using the Savitzky-Golay filter (Fig. 23). It is seen that the presence 

of the limit point is beneficial because it allows the MNLMPC calculations to attain the Utopia solution, validating the analysis 

of Sridhar(2024)[50]. 
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Figure 1: Bifurcation Analysis for Dengue Model 1 

 

 
Figure 2:  MNLMPC Dengue Model1  sh vs t 

 
Figure 3 :  MNLMPC Dengue Model 1 eh vs t 
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Figure 4 :  MNLMPC Dengue Model1  ih vs t 

 
Figure 5 :  MNLMPC Dengue Model 1 ah vs t 

 
Figure 6: MNLMPC Dengue Model1  qh  vs t 

 

https://sciencefrontier.org/journals/biomedical-research-and-clinical-advancements
https://sciencefrontier.org/journals/biomedical-research-and-clinical-advancements


                                                                                                                                                                     

 

                          https://sciencefrontier.org/journals/biome

dical-research-and-clinical-advancements 
 

 

                           © 2025 Lakshmi. N. Sridhar et al. 

10 

 
Figure 7:   MNLMPC Dengue Model 1 rh vs t 

 

 
Figure 8:   MNLMPC Dengue Model 1 vh vs t 

 
Figure 9:   MNLMPC Dengue Model 1  sm vs t 
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Figure 10  : MNLMPC Dengue Model 1  em vs t 

 

 
Figure 11:  MNLMPC Dengue Model 1 im vs t 

 
Figure 12:    MNLMPC Dengue Model 1  phi1 phi2 phi3  vs t (noise exhibited) 
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Figure 13:  MNLMPC Dengue Model 1  phi1sg phi2sg  phi3sg  vs t (noise removed with Savitzky-Golay filter) 

 
Figure 14:  Bifurcation Analysis for Dengue Model 2 

 

Conclusions: 

Bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies in two dynamic dengue transmission models. The 

bifurcation analysis revealed the existence of branch and limit points. The branch and limit points (which cause multiple steady-

state solutions from a singular point) are very beneficial because they enable the Multiobjective nonlinear model predictive 

control calculations to converge to the Utopia point (the best possible solution) in the models.    A combination of bifurcation 

analysis and Multiobjective Nonlinear Model Predictive Control(MNLMPC)  for  dengue transmission models is the main 

contribution of this paper.  
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