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Analysis and Control of a Drug Delivery Model 

 

 

Introduction: 

Background 

Coldman and  Murray  (2000)[1] performed optimal control studies for a stochastic model of cancer chemotherapy. Oefelein et 

al (2000)[2] reassessed the definition of castrate levels of testosterone and investigated the implications for clinical decision-

making.  Stengel et al (2002)[3] investigated the optimal enhancement of immune responses. Oefelein and  Resnick (2003)[4]  

studied testosterone suppression for patients with prostate cancer. Kimmel and Swierniak(2006)[5]  provided a control Theory 

approach to cancer chemotherapy, benefiting from Phase Dependence and Overcoming Drug Resistance.  Gu and  

Moore(2006)[6] studied optimal therapy regimens for treatment-resistant mutations. Tornøe et al (2007)[7] developed 

Population pharmacokinetic/pharmacodynamic (PK/PD) models of the hypothalamic-pituitary-gonadal axis following treatment 

with GnRH analogues.  

Scher et al (2008)[8] researched design and endpoints of Clinical Trials for Patients With Progressive Prostate Cancer and 
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Castrate Levels of Testosterone. Woodcock et al (2008)[9] studied the FDA Critical Path Initiative and Its Influence on New Drug 

Development. De Pillis et al (2008)[10] performed optimal control studies of mixed Immunotherapy and chemotherapy of 

tumors. Engelhart  et al (2011)[11] performed optimal control  computation for selected cancer chemotherapy ODE models with 

a view to the potential of optimal schedules and choice of objective function. Romero et al (2012)[12]  developed a 

pharmacokinetic/pharmacodynamic model of the testosterone effects of triptorelin administered in sustained release 

formulations in patients with prostate cancer. 

Shi et al (2014)[13]  conducted a survey of optimization models on cancer chemotherapy treatment planning. Buil-Bruna  et al 

(2016)[14] performed a population pharmacokinetic analysis of Lanreotide Autogel/Depot in the Treatment of Neuroendocrine 

Tumors. Ledzewicz and  Moore (2016)[15]  studied the dynamical systems properties of a mathematical model for the treatment 

of CML.  Almeida et al (2016) developed a   simplified control scheme for the depth of anesthesia. Almeida et al (2016)[17] 

developed a   simplified control approach for  neuromuscular blockade levels.  He et al (2016)[18] developed optimized 

treatment schedules for chronic myeloid leukemia. Irurzun-Arana et al (2018)[19] used an  optimal dynamic control approach 

in a multi-objective therapeutic scenario with an application to drug delivery in the treatment of prostate cancer. 

This work aims to perform bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies in a drug-delivery 

dynamics model (Irurzun-Arana et al ;2018[19]).  The paper is organized as follows. First, the model equations are presented, 

followed by a discussion of the numerical techniques involving bifurcation analysis and multiobjective nonlinear model 

predictive control (MNLMPC). The results are then presented, followed by the discussion and conclusions. 

 

1. Model Equations(Irurzun-Arana et al ;2018[19]) 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

1
 1/ 1 1 1 /

2
 2 / 2 2 2 /

1/ 1 1 1 / 2 / 2 2 2 / /

50
( ) 2

50 0 0 0

dc
cld vt c cld ctrp vc

dt

dc
cld vt c cld ctrp vc

dt

dctrp
cld vt c cld ctrp vc cld vt c cld ctrp vc cl ctrp vc

dt

drt dr rt rt
ksr kdr rt

dt dr frc frc rt rt

dtst
kst f

dt

u

= − +

= − +

= − − −

= −

+ +

    
    
    

−
+ −

= ( ) ( )

( )

( )

( / )

1 ( / )

rc rt kin kdt tst

agn ctrp kd
frc

agn ctrp kd

+ −

+
=

+ +

  (1) 

 

The parameter values are 

274.3; 8.1; 1 12; 2 33.8; 1 832.3; 2 159.5; 0 3.98; 0.931;

50 0.0124; 0.185; 0.041; 0.55; 0.31;  0 0.2366; 0 1; 0.5;

0.5; 0.5;

cl vc vt vt cld cld tst kd

dr ksr kin kdt agn frc rt u

kdr kst

= = = = = = = =

= = = = = = = =

= =

  

Bifurcation analysis : 

The MATLAB software MATCONT is used to perform the bifurcation calculations. Bifurcation analysis deals with multiple 

steady-states and limit cycles.  Multiple steady states occur because of the existence of branch and limit points.  Hopf bifurcation 

points cause limit cycles .  A  commonly used MATLAB program that locates limit points,  branch points, and Hopf bifurcation 

points is MATCONT(Dhooge Govearts, and Kuznetsov, 2003[20]; Dhooge Govearts, Kuznetsov, Mestrom and   Riet,  2004[21] ).  

This program  detects Limit points(LP),  branch points(BP), and Hopf bifurcation points(H) for an  ODE  system  
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 ( , )
dx

f x
dt

=   (2) 

 
nx R  Let the bifurcation parameter be .  Since the gradient is orthogonal to the tangent vector,   

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nz z z z z z +=    must satisfy  

 

 0Az =   (3) 

 Where  A is  

 [ / | / ]A f x f =       (4) 

where  /f x   is the Jacobian matrix.  For both limit and branch points, the matrix [ / ]f x    must be singular.   The n+1 th 

component of the tangent vector 1nz +  = 0 for a limit point (LP)and for a branch point (BP) the matrix 
T

A

z

 
 
 

 must be singular. 

At  a Hopf bifurcation point,  

 det(2 ( , )@ ) 0x nf x I =   (5) 

  @ indicates the bialternate product while 
nI  is the n-square identity matrix. Hopf bifurcations cause limit cycles  and should 

be eliminated because limit cycles  make optimization and control tasks very difficult.  More details can be found in Kuznetsov 

( 1998[22];  2009[23]) and Govaerts  [2000] [24].  

 

 

2. Multiobjective Nonlinear Model Predictive Control (MNLMPC)  

Flores Tlacuahuaz et al (2012)[25] developed a multiobjective nonlinear model predictive control (MNLMPC) method that  is 

rigorous and does not involve weighting functions or additional constraints. This procedure is used  for performing the 

MNLMPC  calculations  Here   

0

( )
i f

i

t t

j i

t

q t
=

=

 (j=1, 2..n)  represents   the variables that need to be minimized/maximized 

simultaneously for  a problem   involving a set of ODE  

( , )
dx

F x u
dt

=        (6) 

 ft  being the final time value, and n the total number of objective variables and . u  the control parameter.    This  MNLMPC 

procedure first solves the single objective optimal control problem independently optimizing each of the variables 

0

( )
i f

i

t t

j i

t

q t
=

=

    

individually.  The minimization/maximization of 

0

( )
i f

i

t t

j i

t

q t
=

=

  will lead to the values 
*

jq   .  Then the optimization problem that 

will be solved is  

0

* 2

1

min( ( ( ) ))

( , );

i f

i

t tn

j i j

j t

q t q

dx
subject to F x u

dt

=

=

=

−

=

 
       (7) 
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This will provide the values of u  at  various times. The first obtained control value of u  is implemented and the rest are  

discarded. This procedure is repeated until the implemented and the first obtained control values are the same or if the Utopia 

point  where ( 

0

*( )
i f

i

t t

j i j

t

q t q
=

=

=  for all j)   is obtained.  

Pyomo (Hart et al, 2017)[26] is used for these calculations.  Here, the differential equations are  converted to a Nonlinear 

Program (NLP) using the orthogonal collocation method   The NLP is solved using  IPOPT (Wächter And Biegler, 2006)[27]and 

confirmed as a global solution with BARON (Tawarmalani, M. and N. V. Sahinidis 2005)[28].  

  The steps of the algorithm are as follows   

1. Optimize 

0

( )
i f

i

t t

j i

t

q t
=

=

  and obtain 
*

jq  at various time intervals ti. The subscript i is the index for each time step.   

2. Minimize 

0

* 2

1

( ( ( ) ))
i f

i

t tn

j i j

j t

q t q
=

=

=

−  and get  the control values for various times. 

3. Implement the first obtained control values  

4. Repeat steps 1 to 3 until there is an insignificant difference between the implemented and the first obtained value of 

the control variables or if the Utopia point is achieved. The Utopia point is when 

0

*( )
i f

i

t t

j i j

t

q t q
=

=

=  for all j.  

 Sridhar (2024)[29] proved that the MNLMPC calculations to converge to the Utopia solution when the bifurcation analysis 

revealed the presence of limit and branch points . This was done by imposing the singularity condition on the co-state equation 

(Upreti, 2013)[30].   If the minimization  of   1q  lead to the value 
*

1q  and the minimization of 2q  lead to the value 
*

2q   The 

MNLPMC calculations will minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The multiobjective  optimal control problem is 

 
* 2 * 2

1 1 2 2min ( ) ( ) ( , )
dx

q q q q subject to F x u
dt

− + − =
  (8)  

Differentiating the objective function results in  

 
* 2 * 2 * * * *

1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )
i i i

d d d
q q q q q q q q q q q q

dx dx dx
− + − = − − + − −   (9) 

The Utopia point requires that both 
*

1 1( )q q−  and 
*

2 2( )q q−  are zero.  Hence   

 
* 2 * 2

1 1 2 2(( ) ( ) ) 0
i

d
q q q q

dx
− + − =   (10) 

the optimal control co-state equation (Upreti;  2013)[30] is  

 
* 2 * 2

1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d
q q q q f t

dt dx
  = − − + − − =   (11) 

i  is the Lagrangian multiplier. ft  is the final time.  The first term in this equation is 0 and hence  
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 ( ) ; ( ) 0i x i i f

d
f t

dt
  = − =   (12) 

At a limit or a branch point, for the set of ODE ( , )
dx

f x u
dt

=  xf  is singular. Hence there are two different vector-values for 

[ ]i  where ( ) 0i

d

dt
   and ( ) 0i

d

dt
   . In between there is a vector [ ]i  where ( ) 0i

d

dt
 =  . This, coupled with the boundary 

condition ( ) 0i ft =  will lead to  [ ] 0i =  This makes the problem an unconstrained optimization problem, and the only 

solution is the Utopia solution.   

 
Results : 

When rt0 is the  bifurcation parameter, we get BP ar (c1,c2,ctrp,rt,tst,rt0) values of  

 ( 0.021874 0.061611 0.014765 0 0.074545 0.425365 ) (Fig. 1a) 

When frc0  is the  bifurcation parameter, we get BP ar (c1,c2,ctrp,rt,tst,frc0) values of  

 ( 0.021874 0.061611 0.014765 0 0.074545 0.248996 ) (Fig. 1b) 

For the MNLMPC calculations, 

0 0 0

1( ), 2( ), ( )
i f i f i f

i i i

t t t t t t

i i i

t t t

c t c t ctrp t
= = =

= = =

    were    minimized individually and  each minimization led 

to a value of 0.   

0

( )
i f

i

t t

i

t

tst t
=

=

  was maximized and resulted in a value of 1.5284. The multiobjective optimal control problem will 

involve the minimization of 

0 0 0 0

2 2 2 2( ( )) ( 2( )) ( ( ) 1.5284) ( 1( ))
i f i f i f i f

i i i i

t t t t t t t t

i i i i

t t t t

ctrp t c t tst t c t
= = = =

= = = =

+ + − +     subject to the equations of 

the listeriosis model.  This led to a value of zero (the Utopia solution).   The MNLMPC  control values of u,  was 

0.0010016175523356997. Figs 1c -1e. The control profile u vs t exhibited a lot of noise. This was remedied using the 

Savitzky-Golay filter to produce a smoother control profile (usg vs t) . Both u and usg profiles are shown in fig. 1e. 

 
Figure 1: a rt0 is the bifurcation parameter 
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Figure 1b: frc0 is bifurcation parameter 

 
Figure 1c: MNLMPC c1 c2 ctrp profiles 

 

 
Figure 1d: MNLMPC rt tst profiles 
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Figure 1e: MNLMPC u vs t (noise exhibited) usg (noise eliminated with Savitzky Golay filter) 

 

Discussion of Results: 

Theorem  

If one of the functions in a dynamic system is separable into two distinct functions, a branch point singularity will occur in 

the system.  

Proof  

Consider a system of equations  

 

 ( , )
dx

f x
dt

=   (13) 

 
nx R  . Defining  the matrix A as  

 

1 1 1 1 1 1

1 2 3 4

2 2 2 2 2 2

1 2 3 4

..........

..........

...........................................................

.................................................

n

n

f f f f f f

x x x x x

f f f f f f

x x x x x

A





     

     

     

     

=

1 2 3 4

..........

..........n n n n n n

n

f f f f f f

x x x x x 

 
 
 
 
 
 
 
 
 
      
 
      
 
 

  (14) 

  is the bifurcation parameter. The matrix A can be written in a compact form as  

 [ . | ]
p p

q

f f
A

x 

 
=

 
  (15) 

The tangent at any point x;    ( 1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) must satisfy  

 0Az =   (16) 
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The matrix { }
p

q

f

x




  must be singular at  both limit and branch points..  The n+1 th component of the tangent vector 1nz +  = 0  

at a limit point (LP) and for a branch point (BP) the matrix 
T

A
B

z

 
=  
 

 must be singular.  

 

Any  tangent at a point y that is defined by 1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) must satisfy  

 0Az =   (17) 

 

For a branch point, there must exist two tangents at the singularity. Let the two tangents be z and w.  This implies that  

 
0

0

Az

Aw

=

=
  (18) 

Consider a vector v that is orthogonal to one of the tangents (say z). v can be expressed as a linear combination of z and w (

v z w = + ). Since 0Az Aw= =  ; 0Av =  and since z and v are orthogonal,  

0Tz v = . Hence 0
T

A
Bv v

z

 
= = 
 

 which implies that B is singular.  

Let  any of the functions fi are separable into 2 functions 1 2,   as  

 1 2if =   (19) 

At steady-state ( , ) 0if x  = and this will imply that either 1 0 =  or 2 0 =  or both 1  and 2   must be 0.  This implies that 

two branches 1 0 =  and  2 0 =  will meet at a point where  both 1  and 2   are 0.  

At this point, the matrix B will be singular as a row in this matrix would be  

 [ | ]i i

k

f f

x 

 

 
  (20) 

However,  

 

2 1
1 2

2 1
1 2

[ ( 0) ( 0) 0( 1., , )

( 0) ( 0) ] 0

i

k k k

i

f
k n

x x x

f

 
 

 
 

  

  
= = + = =  =

  

  
= = + = =

  

  (21) 

This implies that every element in the row [ | ]i i

k

f f

x 

 

 
  would be 0 and hence the matrix B would be singular.  The singularity 

in B implies that there exists a branch point.   

 

The two distinct equations (when rt0 is the  bifurcation parameter) can be observed from the equation  

 
( )

( )
50

( ) 2
50 0 0 0

drt dr rt rt
ksr kdr rt

dt dr frc frc rt rt

    
   = − −
   + − 

  (22) 

The two distinct equations are  
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( )
50 1

( ) 2 0
50 0

0

0 0

dr rt
ksr kdr

dr frc frc r r

t

t

r

t

=

    
    − −
    

=
+ −

  (23) 

With  

( )

( )

( / )
0.014765; 0.931; 0.31; 0.425365;

1 ( / )

50 0.0124; 0 0.2366; 0; 0.185; 0.

; 0

5

agn ctrp kd
ctrp kd agn frc

agn ctrp kd

dr frc rt ks

rt

r kdr

+
= = = =

+ +

= = = = =

=
  

both the distinct equations are satisfied, validating the theorem.  

 

 The two distinct equations (when frc0 is the  bifurcation parameter) can be observed from the equation  

 
( )

( )
50

( ) 2
50 0 0 0

drt dr rt rt
ksr kdr rt

dt dr frc frc rt rt

    
   = − −
   + − 

  (24) 

The two distinct equations are  

 

( )
50 1

( ) 2 0
50 0

0

0 0

dr rt
ksr kdr

dr frc frc r r

t

t

r

t

=

    
    − −
    

=
+ −

  (25) 

With  

( )

( )

( / )
0.014765; 0.931; 0.31; ;

1 ( / )

50 0.0124; 0 0.248996; 0; 0.185; 0.5

; 0 1
agn ctrp kd

ctrp kd agn frc
agn ctrp kd

dr frc rt ksr

rt

kdr

+
= = = =

+ +

= = = = =

=
 

both the distinct equations are satisfied, validating the theorem.  

The MNLMPC calculations converged to  the Utopia solution, justifying the analysis of Sridhar(2024)[29]. 

Conclusions  

Bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies were performed in a drug-delivery  model. The 

bifurcation analysis revealed the existence a branch point in the model. The branch point  (which cause multiple steady-state 

solutions from a singular point)  is  very beneficial because it enables  the Multiobjective nonlinear model predictive control 

calculations to converge to the Utopia point ( the best possible solution) in the model.  It is proved (with computational 

validation) that the branch point was caused by the existence of two distinct separable functions in one of the equations in the 

dynamic model. A theorem was developed to demonstrate this fact for any dynamic model.  A combination of bifurcation 

analysis and Multiobjective Nonlinear Model Predictive Control(MNLMPC)  for dynamic models involving listeriosis transmission  

is the main contribution of this paper.  
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